UDC 615.45:615.71

R. I. Alimov, I. N. Zatorskaya, and T. T. Shakirov

Among the known methods for the isolation of foetidine [1], the ion-exchange method has proved to be economically rational for industrial production [2, 3]. One of the stages of this method is liquid extraction. We have studied the process of the distribution of foetidine in the eluate-organic solvent system.

For the complete exhaustion of the eluate, seven contacts of the phases are required, with a ratio of eluate and organic solvent of 3:1 in each contact.

In the first three contacts of the phases, about 90% of the desired product is obtained, and in the remaining contacts, in addition to the combined alkaloids, a large amount of foreign substances is extracted the elimination of which is associated with great losses of foetidine. Consequently it would be desirable to extract three times.

Table 1 gives information on the extraction of foetidine by organic solvents and mixtures of them in the eluate-organic solvent system at definite values of the pH of the eluate. The amount of foetidine was 0.07% of the total weight of the raw material.

Thus, it has been shown that the distribution coefficient of foetidine in the organic solvents studied is fairly high; with an increase in the pH of the eluate the distribution coefficient falls, which is explained by the formation of an emulsion and the incomplete separation of the phases. A good solvent for the extraction of foetidine from the eluate proved to be gasoline—chloroform (4:1).

TABLE 1. Distribution Coefficients of Foetidine in Organic Solvents as Functions of the pH

Solvent	Alkaloids, % wt. of raw material	Foetidine,% alkaloids	κ _p	Alkaloids, % wt. of raw material	Foetidine,% alkaloids	κ_{p}
	рН 8			pH 10		
Benzene Gasoline	0,133	31.2 Very sma	2.7 1 amo	0,106 int isolated	38	2,5
Chloroform Dichloroethane Gasoline - chloro-	0,108 0,15	33 28,5	1,8 3,3	0.106 0.095	36 42,1	2,1 2,5
form (4:1) Gasoline - chloro-	0,135	33	3,7	0,085	50	3,1
form (2:1) Gasoline - benzene Gasoline - benzene (1:1)	0,102 0,125 0,141	40,8 31,8 30,3	2,9 2,5 3,1	0,104 0,073 0,085	41 54 47,4	3,2 2,3 2,5
Gasoline - benzene (1:2) Gasoline - dichloro - ethane (4:1)	0,119	36	3,3	0,085	50	3,1
Dichloroethane - benzene (1:4)	0,128	31	2,4	0,09	42,5	2,1
Dichloroe thane - chloro- form (2:1)	0,175	24	3	0,175	23	2, 5

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 565-566, July-August, 1973. Original article submitted January 31, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

LITERATURE CITED

- 1. Dzh. Sargazakov, Z. F. Ismailov, and S. Yu. Yunusov, Dokl. Akad. Nauk UzSSR, No. 6, 28 (1963).
- 2. I. N. Zatorskaya, R. I. Alimov, and T. T. Shakirov, Khim. Prirodn. Soedin., 657 (1972).
- 3. T. T. Shakirov, I. N. Zatorskaya, S. Yu. Yunusov, Z. F. Ismailov, A. Maksudov, and S. Abdizhabbarova, USSR Authors' Certificate No. 321,037; Byul. Izobret., No. 34 (1971).